Author: <span class="vcard">JakubK</span>

Chasing darkness in Greece – Karpathos

Like every summer, I packed the telescope, mount, camera and many accessories and flew to Greece. This time we went to Karpathos, the island not spoiled by massive tourism and light pollution. Long story short, the skies were amazing, but every single night, except one, was extremely windy. It was a torture – to see millions of stars and not be able to photograph them. There is no surprise that Karpathos is beloved by windsurfers and kite surfers. In the end I captured only the Iris Nebula and the Double Cluster. I talked to locals and they told me that the wind should stop at the end of September, so probably I picked the wrong time.

On the other hand I was able to do a wide angle astrophotography of the Milky Way. SQM reached 21.5, galactic core was so bright and I think the photos of the Milky Way are quite decent. This time I changed the setup and purchased Canon EOS 6D, which is one of the best cameras for this purpose. Moreover, there are many second hand 6Ds, because mirrorless mania arrived. 6D combined with Samyang 14 mm f2.8 offers excellent performance for this purpose.


Double Cluster NGC869 and NGC884

Two clusters visually close to each other can be located between constellations Perseus and Cassiopeia.  The clusters are relatively young (12 million years) and they are 2700 light-years far from Earth.

The picture was captured during my travel to Karpathos where I had only single wind free night.

I know, the composition should be turned by 90°. I just simply forgot to twist the camera.

Technical details:

TelescopeNewton 150/600 mm
Aperture150 mm
Focal length630 mm
MountAvalon M-Zero
AutoguidingZWO 174MM, Guidescope 30 mm
CameraZWO 071 Pro @-5°C
CorrectorExplore Scientific HR
FiltersAstronomik L-1 - UV IR Block Filter
Exposure28x180s, Gain 94, bin 1x1,
Date2019-09-03

NGC7023 Iris nebula

Iris nebula, known as NGC 7023, is a reflection/dark nebula located in constellation Cepheus. It’s 1300 light years far from the Solar system and it has 6 light years in diameter. In the middle of the nebula rules so called baby star, which is only few thousand years old. The star was created partially from the gas which is now illuminated.

The picture was taken under dark skies of Greek island Karpathos during my 2019 expedition. Unfortunately, the weather was very bad. There wasn’t a single cloud on the sky, but it was extremely windy, therefore I got only one single steady night and this night I wanted to capture also other deep space objects. Therefore the picture is a stack of only 37 pictures, each 2 minutes long.

Technical details:

TelescopeNewton 150/600 mm
Aperture150 mm
Focal length630 mm
MountAvalon M-Zero
AutoguidingZWO 174MM, Guidescope 30 mm
CameraZWO 071 Pro @-5°C
CorrectorExplore Scientific HR
FiltersAstronomik L-1 - UV IR Block Filter
Exposure37x120s, Gain 94, bin 1x1,
Date2019-09-03

M72 Globular Cluster in Aquarius

Messier 72 is a globular cluster, which can be located in constellation Aquarius. The cluster is approximately 55 light-years from us, which makes it one of the distant objects from Messier catalogue. M72 is very special deep space object for me, because it’s the last object of Messier catalogue captured by me. Now I am thinking, shall I continue and try to capture NGC catalogue? Or shall I move to southern hemisphere? I am definitely sure that some of the Messier’s objects need to be recaptured.

Technical details:

TelescopeNewton 254/1000 mm
Aperture254 mm
Focal length1060 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR coma corrector
FiltersAstronomik L-1 - UV IR Block Filter
Exposure60x180s, Gain 94, bin 1x1,
Date2019-08-09

M13 Great Globular Cluster in Hercules

In my opinion, Messier 13 is the most beautiful globular cluster in our galaxy. Last time when I photographed this cluster, I used focal reducer (don’t ask me why), therefore I decided to recapture it with focal length 1060 mm. Small galaxy in upper right corner is called NGC 6209.

Technical details:

TelescopeNewton 254/1000 mm
Aperture254 mm
Focal length1060 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR coma corrector
FiltersAstronomik L-1 - UV IR Block Filter
Exposure55x180s, Gain 94, bin 1x1,
Date2019-06-07

M10 Globular Cluster

Messier 10 is a globular cluster located in constellation Ophiuchus. This cluster belongs to one of the closest to the Earth – the distance is “only” 14 300 light-years. It has visually many globular neighbors: M12 northwest, M14 east and M107 southwest.

Technical details:

TelescopeNewton 254/1000 mm
Aperture254 mm
Focal length1060 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR coma corrector
FiltersAstronomik L-1 - UV IR Block Filter
Exposure38x180s, Gain 94, bin 1x1,
Date2019-06-02

M12 Globular Cluster

Messier 12 is a globular cluster located in constellation Ophiuchus. The cluster is 15,700 light-years away from Earth and contains approximately 200,000 stars. There are another two globular clusters in the vicinity: M10 south-east and M14 east.

Technical details:

TelescopeNewton 254/1000 mm
Aperture254 mm
Focal length1060 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR coma corrector
FiltersAstronomik L-1 - UV IR Block Filter
Exposure32x180s, Gain 94, bin 1x1,
Date2019-06-01

M40 Double Star

Messier 40 is a double star located in constellation Ursa Major (in the middle of the picture). Charles Messier was searching for the nebula in this part of the sky, which was observed by Johannes Hevelius. He was unable to locate any nebulous object, but he found this double star and catalogued them under the number 40. Double star should be a system of two stars, which are bonded by the gravity, but the latest measurements demonstrated that these two stars are close to each other only visually and they are completely unrelated.

Technical details:

TelescopeNewton 254/1000 mm
Aperture254 mm
Focal length1060 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR coma corrector
FiltersAstronomik L-1 - UV IR Block Filter
Exposure40x120s, Gain 94, bin 1x1,
Date2019-06-01

M101 Pinwheel Galaxy

Messier 101 is a beautiful spiral galaxy, which can be located in constellation Ursa Major. If I look back to my older picture, I must smile, how I overdone the saturation and whole post-processing. Such beautiful galaxy deserves to be re-captured and processed again:

Technical details:

TelescopeNewton 254/1000 mm
Aperture254 mm
Focal length1060 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR coma corrector
FiltersAstronomik L-1 - UV IR Block Filter
Exposure31x300s, Gain 94, bin 1x1,
Date2019-06-01

M102 Spindle Galaxy

Galactic season continues. After capturing M64 galaxy, I pointed my telescope to another one. Specifically to Messier 102 called Spindle Galaxy, which is a lenticular galaxy in constellation Draco. Afterwards I went to sleep and the telescope was collecting the photons coming from there. The light had to travel very long distance, because this galaxy is approximately 40 million light-years from Earth.

Technical details:

TelescopeNewton 254/1000 mm
Aperture254 mm
Focal length1060 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR coma corrector
FiltersAstronomik L-1 - UV IR Block Filter
Exposure55x180s, Gain 94, bin 1x1,
Date2019-05-24

M64 Black Eye Galaxy

Messier 64 is a galaxy, which can be located in constellation Coma Berenices. The name “Black Eye” or sometimes “Evil Eye” got from the central dark cloud, which blocks partially the light coming from there. This galaxy is relatively close to us – only 17 million light-year, which is significantly less compared to visually neighboring galaxies in constellation Virgo.

Technical details:

TelescopeNewton 254/1000 mm
Aperture254 mm
Focal length1060 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR coma corrector
FiltersAstronomik L-1 - UV IR Block Filter
Exposure24x180s, Gain 94, bin 1x1,
Date2019-05-23

M53 Globular Cluster

Messier 53 is a globular cluster located in constellation Coma Berenices. This cluster is quite far from galactic center of the Milky Way (60 000 light-year), which makes it to be located on the outer edge of our galaxy. However, it heading towards the center with speed approximately 63 km/s. The cluster contains 500 000 stars, but this cannot be verified by the photo I took, because it is 58 000 light-year from Earth and my telescope has very small aperture to resolve this kind of details.

Technical details:

TelescopeNewton 254/1000 mm
Aperture254 mm
Focal length1060 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR coma corrector
FiltersAstronomik L-1 - UV IR Block Filter
Exposure45x300s, Gain 94, bin 1x1,
Date2019-05-13

M87 Virgo A Galaxy

I came back from La Palma, disappointed by the weather. Surprisingly, back home was nice Moonless weather, so I took my telescope out and captured Messier 87, which is bright and super massive galaxy in constellation Virgo. It’s one of the largest elliptical galaxy in observable universe and makes the central sport in galactic cluster in Virgo. This galaxy contains a lot of globular clusters, approximately 12000. In comparison our Milky Way contains only 200.

I am really happy that I captured this galaxy this year, because quite recently was the first photo of a super massive black hole in M87 was captured. I think everybody got across the orange picture, which was an effort of many scientists.

Technical details:

TelescopeNewton 254/1000 mm
Aperture254 mm
Focal length1060 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 071 Pro @-15°C
CorrectorExplore Scientific HR coma corrector
FiltersAstronomik L-1 - UV IR Block Filter
Exposure55x300s, Gain 94, bin 1x1,
Date2019-05-06

Chasing darkness on La Palma

All of my previous dark-sky expeditions were organized in summer-autumn part of the year. At this part of the year shines the galactic core of the Milky Way during the night (only if the sky is dark enough) and there are many deep space objects available. During my expedition to Milos I managed to capture huge part of the Messier catalogue. However, there are some deep space objects, which are badly visible from my home and which have to be captured in the spring. I was researching where can I spend few days, preferably somewhere south and even more preferably under dark skies. Googling yielded in brilliant idea – La Palma, Canary Islands. This island belongs to three most prominent spots on Earth for astronomy (together with Mauna Kea in Hawaii and European Southern Observatory in Chile). The observatory on La Palma is called Roque de los Muchachos and currently there is the largest optical, single aperture telescope on this Planet (The Gran Telescopio Canarias). The observatory is built on the highest mountain of the island at altitude nearly 2500 meters above the sea level. On the whole island there are strict rules for the street illumination, therefore the dark skies are not the privilege of the highest mountains, but nearly everywhere are the conditions great, maybe except two big towns – Santa Cruz de La Palma and Los Llanos. Dark sky is probably the same touristic attraction on La Palma like the beaches on Greek islands.


M68 Globular Cluster

Messier 68 is a globular cluster located in constellation Hydra. The cluster contains more than 100,000 stars and it is approximately 33,000 light-years away from Earth. The best time for observation is between March and July. Observers from Central Europe have disadvantage, because M68 doesn’t raise much above the horizon. Therefore this cluster was one of my primary targets on La Palma, where M68 is much better visible. However, the weather was bad and I only got 40 minutes between the clouds.

Technical details:

TelescopeNewton 150/600 mm
Aperture150 mm
Focal length630 mm
MountAvalon M-Zero
AutoguidingZWO 174MM, Guidescope 30 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR
FiltersAstronomik L-1 - UV IR Block Filter
Exposure19x120s, Gain 94, bin 1x1,
Date2019-04-30

M93 Open Cluster

Messier 93 is an open cluster located in constellation Puppis and it is about 3400 light-year away from Earth. My previous attempt to capture this object was not so successful, because M93 doesn’t rise far from horizon in Central Europe. On La Palma is the situation different, but only if the weather allows it. I was partially lucky and a hole between the clouds appeared and I got 44 minutes opportunity to capture this cluster properly.

Technical details:

TelescopeNewton 150/600 mm
Aperture150 mm
Focal length630 mm
MountAvalon M-Zero
AutoguidingZWO 174MM, Guidescope 30 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR
FiltersAstronomik L-1 - UV IR Block Filter
Exposure22x120s, Gain 94, bin 1x1,
Date2019-04-28

M83 Southern Pinwheel Galaxy

Messier 83 is a spiral galaxy located in constellation Hydra. It is one of the brightest and closest (15 million light-years) galaxies observable from Earth. On the other hand there are much brighter and closer galaxies, for example Andromeda is only 2.5 million light-years away and M33 Triangulum Galaxy is roughly 3 million light-years away.

Due to the fact that the M83 has very low southern declination (rises not far from horizon), thus it is very difficult to capture from light polluted Central Europe, I decided to take a trip to south. Specifically to La Palma (Canary Islands) and tried to photograph it from there. I had only one clear night out of ten, but together with M68 was this galaxy my primary target and I somehow managed. My plan was to capture more deep space objects, but the weather didn’t allow me.

Technical details:

TelescopeNewton 150/600 mm
Aperture150 mm
Focal length630 mm
MountAvalon M-Zero
AutoguidingZWO 174MM, Guidescope 30 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR
FiltersAstronomik L-1 - UV IR Block Filter
Exposure87x300s, Gain 94, bin 1x1,
Date2019-04-25

M61 Galaxy

Spring offers the best conditions for photographing/observing of the galaxies. This is caused by the fact that the constellations Virgo, Leo and Coma Berenices are visible and there are galaxies anywhere you look. This year, I already captured M58 M88 M89 M90 M91 Galaxies, but there are still some galaxies missing, in order to finish Messier catalogue. One of them was M61 (upper left corner). This spiral galaxy is located in constellation Virgo, it has about the same size as our home galaxy Milky Way and it is approximately 52 light-year away from Earth.

Technical details:

TelescopeNewton 150/600 mm
Aperture150 mm
Focal length630 mm
MountAvalon M-Zero
AutoguidingZWO 174MM, Guidescope 30 mm
CameraZWO 071 Pro @-15°C
CorrectorExplore Scientific HR
FiltersAstronomik L-1 - UV IR Block Filter
Exposure74x180s, Gain 94, bin 1x1,
Date2019-04-06

M88 M91 Galaxies

Messier 88 (right) and Messier 91 are the spiral galaxies located between constellations Coma Berenices and Virgo. Both belong to the Virgo Cluster of galaxies and both are approximately 60 light-years away from Earth. The small galaxy at the very left is called NGC 4571.

Technical data:

TelescopeNewton 150/600 mm
Aperture150 mm
Focal length630 mm
MountAvalon M-Zero
AutoguidingZWO 174MM, Guidescope 30 mm
CameraZWO 071 Pro @-15°C
CorrectorExplore Scientific HR
FiltersAstronomik L-1 - UV IR Block Filter
Exposure47x300s, Gain 94, bin 1x1,
Date2019-03-30

NGC 2237 Rosette Nebula

Rosette Nebula is a giant cloud of hydrogen gas. The gas is ionized by the star cluster located in the middle and therefore emits the light. Circular shape and the color correspond to the name – the rose. The cluster in the middle can be observed even by using small telescope, but the nebulosity is very dim, therefore in order to see it, one would need perfectly dark sky and very large telescope with low magnification. It’s definitely easier to photograph the nebulosity. My previous photo was done through the narrow band filters, which suppress the light pollution and increases the contrast of the picture. Now I tried it with normal one shot color camera and I must conclude that it went quite well.

Technical details:

TelescopeNewton 150/600 mm
Aperture150 mm
Focal length630 mm
MountAvalon M-Zero
AutoguidingZWO 174MM, Guidescope 30 mm
CameraZWO 071 Pro @-10°C
CorrectorExplore Scientific HR
FiltersAstronomik L-1 - UV IR Block Filter
Exposure16x300s, Gain 94, bin 1x1,
Date2019-03-30