Whirlpool Galaxy

The Whirlpool Galaxy, also known as Messier 51a (M51a) or NGC 5194, is an interacting grand-design spiral galaxy located in the constellation Canes Venatici. It was the first galaxy to be classified as a spiral galaxy. The Whirlpool Galaxy lies 7.22 megaparsecs (23.5 million light-years) away from us and has a diameter of 23.58 kiloparsecs (76,900 light-years). Its companion, NGC 5195, is easily observed by amateur astronomers, and both galaxies can be seen with binoculars.

TelescopeNewtonian 254/1000 mm
Aperture254 mm
Focal length1170 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 2600MC @-10°C
CorrectorTeleVue Paracorr 2″
FiltersAntlia RGB
Exposure66x180s, Gain 100, bin 1×1,
Date2024-04-14

And here is the capturing process recorded:


CHASING DARKNESS IN SWITZERLAND 2024 – FLIMS LAAX

Last four winters we spent our skiing vacation in the same place – Flims-Laax ski resort. Specifically, in Berghaus Nagens. This small ski hotel is at the end of the gondola at 2200 meters above sea level. This means the nearest street lamps are far away. However, the hotel is surrounded by ski slopes. The slopes need to be prepared by snow groomers, which illuminate the white snow. This spoils a bit otherwise very dark sky. However, the main reason was to enjoy the skiing vacation and the starry nights are just an add-on. Last year I struggled with the battery, which froze after a few minutes outside. I purchased a dedicated astro-battery this year and was fortunate with the weather. 4 cloudless nights in one week – I really didn’t expect that to happen.

The initial plan was to capture the Witch Head Nebula, then some dark nebulae in Taurus, and if time allows Pleiades. It went well, so I am slowly preparing a plan for next year.

LensSony 20 mm f1.8 G @f2.2
CameraSony A7III AstroMod
MountTripod
Exposure8x15s, ISO 3200
Date2024-01-10

Dark nebulae in Taurus

Constellation Taurus is full of deep space gems. Probably everybody knows the Pleiades open cluster. There are many dark nebulae next to it, which I intended to capture during our winter vacation in Flims-Laax. Three and half hours of total exposure revealed 3D structures of the dark clouds floating in space. The darkest cloud on the left side is B 22 Taurus Dark Cloud Complex, the small one on the left B 207 Eagle’s Head, and the central part B 18 Kutner’s Cloud.

TelescopeAskar ACL 200 F4
Aperture50 mm
Focal length200 mm
MountRainbow Astro RST 135
AutoguidingZWO 178MM, QHY Mini Guide Scope
CameraZWO 6200MC @-10°C
Filtersnone
Exposure72x180s, Gain 100, bin 1×1,
Date2024-01-11

IC 2118 Witch Head Nebula IC 2118

The Witch Head Nebula is a striking and eerie interstellar cloud of dust and gas located in the constellation Orion. Its distinct shape, resembling the profile of a witch’s face in profile, is created by the illumination of nearby stars. This nebula spans about 50 light-years across and is primarily composed of hydrogen gas, which glows faintly in the presence of ultraviolet radiation from neighboring stars. The nebula is a site of ongoing star formation, with young, hot stars embedded within its dusty tendrils. Captivating and mysterious, the Witch Head Nebula is a captivating sight in the night sky, sparking the imagination of astronomers and stargazers alike.

TelescopeAskar ACL 200 F4
Aperture50 mm
Focal length200 mm
MountRainbow Astro RST 135
AutoguidingZWO 178MM, QHY Mini Guide Scope
CameraZWO 6200MC @-10°C
Filtersnone
Exposure73x180s, Gain 100, bin 1×1,
Date2024-01-08

CHASING DARKNESS IN JORDAN 2023

If you think of Jordan, probably the first that comes to your mind is the Petra, where Indiana Jones swung his whip, or the Red Sea, where you can snorkel, or the Dead Sea where you can float in extremely salty water. This country is not famous for its dark sky and most tourists do not come there to do the astrophotography. However, I am not a regular tourist. When we decided to visit Jordan, I immediately started to search where is the darkest location in this country. And I found one. In the south, there is a protected area called Wadi Rum. The place is like a different planet. The red sand is surrounded by the mountains. I felt there like on Mars and probably also Matt Damon, because the movie Martian was shot there. And not just this one but many science fiction movies – more on Wikipedia. If you want to spend a few days there, you have to leave the car in the village in front of the protected area and they will lift you to the camp.

Here is a short video from the day trip in Wadi Rum:

After the trip, I grabbed my new camera Sony A7III, and went straight into the darkness. Our accommodation in the tent was the only source of light. The nearest city is 60 km away, so it was pretty dark.

I walked a bit and this scenery was revealed when I looked in the direction of the camp:

On the other side, the Milky Way was already setting down into the light smog caused by the city of Aqaba, but I still managed to capture its core.

LensSony 20 mm f1.8 G @f1.8
CameraSony A7III AstroMod
MountTripod
Exposure20x15s, ISO 3200
Date2023-10-16


Sh2-91 supernova remnant in Cygnus

In my previous project, where I created a mosaic of the Cygnus constellation, I discovered a faint supernova remnant near the star Albireo. Recognizing the significance of this finding, I committed to giving this celestial object more attention. I directed my Askar ACL telescope to these coordinates and gathered additional data over several hours.

Sh2-91, also identified as LBN 147, is a supernova remnant situated close to Albireo. Unlike its more well-known visual neighbor, the Veil Nebula, Sh2-91 is infrequently captured in deep-space photography. According to available literature, this nebula spans 230 light-years in diameter and is approximately 20 thousand years old.

Aware of the complexity of this target, I understood that an extensive integration time was necessary to highlight its intricate structures. Hence, I dedicated seven clear nights to capturing data for this deep-space object, accumulating nearly 14 hours of valuable data.

TelescopeAskar ACL 200 F4
Aperture50 mm
Focal length200 mm
MountRainbow Astro RST 135
AutoguidingZWO 178MM, QHY Mini Guide Scope
CameraZWO 6200MC @-10°C
FiltersAntlia ALP-T Dualband 5nm
Exposure167x300s, Gain 100, bin 1×1,
Date2023-09-15
2023-09-17
2023-09-19
2023-10-04
2023-10-06
2023-10-07
2023-10-08

Cygnus

Cygnus is a prominent constellation in the northern hemisphere’s summer and autumn skies. Known as the “Swan,” it is easily recognizable due to its distinctive shape, which some people interpret as a flying bird with outstretched wings. In Greek mythology, Cygnus is often associated with the story of Zeus and the transformation of his lover, the beautiful mortal named Leda, into a swan.

The constellation Cygnus is home to several interesting celestial objects. One of the most famous is the Northern Cross, a prominent asterism formed by the brightest stars in the constellation. Deneb (upper right corner), is the brightest star in Cygnus.

In addition to stars, Cygnus contains various deep-sky objects. The North America Nebula (NGC 7000) and the Pelican Nebula (IC 5070) are two emission nebulae located in the region of Deneb. These nebulae are often photographed due to their striking shapes, resembling the continent of North America and a pelican, respectively. Moreover, two supernova remnants can be found in this constellation. The Veil Nebula (upper left) knows probably every amateur astrophotographer, but to find out that there is another remnant called LNB 147 (lower left) was a surprise for me. This one deserves more attention, and if the weather allows, I will try to capture more light coming from there.

Cygnus is also traversed by the Milky Way, making it a rich region for observing star clusters, nebulae, and other deep-sky wonders. Overall, the constellation Cygnus holds a special place in both mythology and astronomy, offering stargazers a captivating celestial experience.

The pictures are a mosaic of 3×4 frames. In total, I captured 342 frames, each 5 minutes long (integration time 28 hours 30 minutes), which were taken during 10 nights in August and September. This makes it my biggest astrophotography project so far.

TelescopeAskar ACL 200 F4
Aperture50 mm
Focal length200 mm
MountRainbow Astro RST 135
AutoguidingZWO 178MM, QHY Mini Guide Scope
CameraZWO 6200MC @-10°C
FiltersAntlia ALP-T Dualband 5nm
Exposure342x300s, Gain 100, bin 1×1,
Date2023-09-12
2023-09-15
2023-09-05
2023-09-06
2023-08-23
2023-08-24
2023-08-16
2023-08-21
2023-08-22
2023-08-11
2023-08-22
2023-08-23

Namibia 2023

As I promised last year, we had to return to Namibia, because I have some unsettled business with the Dolphin Nebula. This year was already a post-pandemic year, so there were many guests at Kiripotib astro farm. The program of the day was the same as last time – processing the pictures during the day and photographing during the night. We managed to see the giraffes again just by e-biking a few km from the farm:

As I already mentioned, my primary target was the Dolphin Nebula, but I prepared a detailed plan of what to photograph. Unfortunately, the plan was ruined by the weather. The first 3 days it was cloudy and even stormy.

This was such a surprise because last time we had only clear skies. I rented a Newtonian telescope for 3 nights and two nights were cloudy, so I had to concentrate on high-priority deep space objects. I tried to recapture the Galaxy Centaurus A, but the mount ALT 6 ADN didn’t work well. 50% of the frames were having oblong stars in the RA direction.

So, I had to concentrate on the short focal lengths. Same as last year, I took SharpStar 94 EPDH and for the second rig carried by the iOptron SkyGuider, I chose Samyang 135 mm slowed down to f2.4. In the end, I managed to capture the Vela supernova remnant, the Statue of Liberty Nebula, and many more.

Here is the farm from a distance with Milky Way in the background:

Star trails roughly 3 hours, Canon 6D, iso 400, 87 exposures, each 2 minutes long, Sigma 28 Art f1.4

The chalet, which we rented last time was already booked, so we stayed in a room called “Hangar”, which is a little bit less photogenic compared to a chalet. Canon 6D, iso 1600, 12x15s, Sigma 28 Art f1.4:

Panorama of the Milky Way, Canon 6D, iso 1600, 6 frames, each 8x15s, Sigma 28 Art f1.4:

I even tried astrophotography with GoPro, but it seems this camera needs some light pollution:

After one week at Kiripotib, we rented a car and headed north to Etosha National Park, but before that, we stopped at the Hoba meteorite site, where the largest single-piece meteorite is resting. We were surprised that its 60 tons of weight didn’t cause a gigantic crater. It is assumed that this impact occurred 80,000 years ago, and most probably there was an ocean, so the meteorite just bounced a couple of times, till the kinetic energy was completely dissipated.

We slept one night at a nearby camp and the next day continued to Etosha National Park. Etosha opens the gates early with the sunrise and closes with the sunset. We decided to stay directly inside, so we don’t have to drive every day in and out. There are many camps inside Etosha, Okaukeojo, Namutoni, Halali, and Dolomite. We picked the first one, due to its central location. This allowed us to wake up really early and with the sunrise start to explore nearby water holes, where many animals can be seen.

What is definitely worth doing, is checking every day a log book located at the reception of each camp. People write their observations during the day and you can easily find out where the lions were spotted.

The rhinos can be seen mainly during the night. Therefore, it is an advantage to stay inside the part, because each camp has a water hole. Every evening something interesting happened. The animals just came, drank water, and left.

After a few nights in Etosha, we headed southwest to visit Twyfelfotein, which is a rock formation with ancient engravings. This site is part of UNESCO heritage. Approximately 6000 years ago hunters and gatherers engraved the animals, which they observed. Observing a lion or even a group of lions must have been very dangerous at that time. This makes me wonder, how come they observed such dangerous animals and survived to tell the tail.

From Twyfelfonein we moved to Swakopmund, a beautiful coastal town. On our way there we did a short hike to see The White Lady painting. When we approached Swakopmund the weather changed rapidly and the temperature dropped from 35 °C to only 12 °C. Luckily we had our winter jackets. Swakopmund is a vibrant town full of bars, restaurants clubs, and many touristic attractions. Probably the most exciting is the dune ride – where the desert meets the ocean. We wondered if we should try it with our rented car, but in the end, we decided to hire a guide, which was a very good decision. I was so happy that I don’t have to drive through the ocean.

Conclusions:

We had a wonderful time in Namibia again. This time we did less astrophotography and more traveling. Obviously, there is a reason to come back. Next time we would like to take a trip to Caprivi Strip, where the hippos can be seen, and from there it is not far from Victoria Falls. Namibia, we will definitely come back!


Rho Ophiuchi cloud complex

The Rho Ophiuchi cloud complex orchestrates a stunning cosmic symphony, blending dark dust lanes, reflection nebulae, and young stars in a mesmerizing display. This celestial masterpiece unfolds approximately 460 light-years away, captivating observers with its intricate dance of stellar birth and evolution. Two notable celestial gems within the Rho Ophiuchi cloud complex are the Serpent Nebula (Barnard 59) and the Crown Nebula (IC 4592). The Serpent Nebula winds through dark dust lanes, while the Crown Nebula emits a soft celestial glow akin to a cosmic crown. These nebulae, along with their stellar companions, add a touch of enchantment to this cosmic masterpiece.

This deep-space object is surrounded by other space marvels. Specifically by the Blue Horsehead Nebula on the upper side, IC 4591 on the right side, and there is a galactic bulge on the left side.

This picture is a panorama of two frames. The initial plan was to continue toward the left into the Milky Way, but this plan was ruined by the weather, so it can be considered an unfinished project.

Technical details:

TelescopeSamyang 135 mm F2 @f2.4
Aperture67.5 mm
Focal length135 mm
MountiOptron Skyguider Pro
AutoguidingZWO 174MM, QHY Mini Guide Scope
CameraZWO 6200MC @-10°C
Filtersno
Exposure165x300s, Gain 100, bin 1×1,
Date2023-05-19

NGC 5367 Reflection Nebula in Centaurus

In the vast expanse of the Centaurus constellation, a celestial wonder awaits the gaze of astronomers and stargazers alike. NGC 5367, a mesmerizing reflection nebula, beckons us with its ethereal beauty and enigmatic allure. At the heart of NGC 5367 lies a stellar nursery, where new stars come to life. The nebula’s blue hues reflect the presence of young, hot stars, illuminating the surrounding gas and dust. NGC 5367, a reflection nebula in Centaurus, invites us to witness the cosmic artistry of light and dust. As we gaze upon this celestial wonder, we are reminded of the vastness and splendor of the universe, fueling our sense of wonder and exploration.

I had to dedicate a lot of imaging time to this deep-space object. Specifically, my camera was collecting 11 hours and 30 minutes, because all reflection nebulae need a lot of time to reveal all the details.

Technical details:

TelescopeSharpstar 94EDPH
Aperture94 mm
Focal length414 mm
MountRainbow Astro RST 135
AutoguidingZWO 178MM, QHY Mini Guide Scope
CameraZWO 2600MM @-10°C
CorrectorF4.4 Quad Reducer
FiltersAntlia V-Pro LRGB
Exposure138x300s, Gain 100, bin 1×1,
Date2023-05-18

Vela Supernova Remnant

The Vela Supernova Remnant Nebula emerged from the explosive demise of a massive star, scattering its outer layers across space. Filamentary structures, shaped by shockwaves and magnetic fields, intertwine throughout the nebula, painting an intricate cosmic tapestry.

Radiating vibrant hues of red, green, and blue, the nebula’s ionized gases create a stunning visual display. Observations reveal delicate wisps of gas, shock fronts, and remnants of the original star, including a pulsar emitting electromagnetic radiation.

The Vela Supernova Remnant Nebula showcases the grandeur of stellar cataclysms. Its intricate structure and vibrant colors captivate observers, urging us to ponder the forces that shape our universe. Explore this cosmic masterpiece and unlock the mysteries of our celestial past.

I had to revisit this deep-space object with a much shorter focal length and a much bigger CMOS sensor. Last year it simply didn’t fit in the field of view.

TelescopeSamyang 135 mm F2 @f2.4
Aperture67.5 mm
Focal length135 mm
MountiOptron Skyguider Pro
AutoguidingZWO 174MM, QHY Mini Guide Scope
CameraZWO 6200MC @-10°C
FiltersIDAS NBZ 2″
Exposure88x300s, Gain 100, bin 1×1,
Date2023-05-15

NGC 3576 The Statue of Liberty Nebula

Discover the breathtaking beauty of the Statue of Liberty Nebula, an ethereal masterpiece located 9,000 light-years away in the Carina constellation. Resembling the iconic symbol of freedom, this emission nebula captivates with its vibrant colors and intricate features.

The Statue of Liberty Nebula, or NGC 3576, showcases a cluster of young, massive stars at its core. Their intense radiation energizes the surrounding hydrogen gas, causing it to emit a mesmerizing red glow. Dark dust lanes intricately crisscross the nebula, adding contrast and creating a resemblance to the statue’s features.

The interplay of colors, from deep crimson to fiery orange and shimmering blue, adds depth and richness to the nebula’s allure.

The Statue of Liberty Nebula invites us to appreciate the universe’s splendor. Its resemblance to the symbol of liberty reminds us of our shared values. Gazing upon this celestial marvel, we are filled with wonder and inspired to explore the mysteries of the cosmos.

TelescopeSharpstar 94EDPH
Aperture94 mm
Focal length414 mm
MountRainbow Astro RST 135
AutoguidingZWO 178MM, QHY Mini Guide Scope
CameraZWO 2600MM @-10°C
CorrectorF4.4 Quad Reducer
FiltersAntlia SHO 3 nm
Exposure134x300s, Gain 100, bin 1×1,
Date2023-05-15

Sh2-308 Dolphin Nebula

Discover the awe-inspiring Dolphin Nebula, a captivating celestial cloud located 15,000 light-years away in the Delphinus constellation. Resembling a graceful leaping dolphin, this planetary nebula enchants observers with its vibrant colors and intricate structure.

The Dolphin Nebula is formed from the outer layers of a dying star, leaving behind a white dwarf at its core. The intense ultraviolet radiation emitted by the white dwarf illuminates the surrounding gases, creating a breathtaking display of red, green, and blue hues. Delicate filaments of gas intertwine, sculpted by powerful stellar winds and radiant energy.

Its mesmerizing colors indicate the presence of hydrogen, ionized oxygen, and helium. This celestial oasis serves as a reminder of the vastness and wonders of the universe, inspiring a sense of awe and exploration.

The Dolphin Nebula showcases the beauty and complexity of the cosmos, inviting us to contemplate the mysteries beyond our world. Its celestial symphony of colors and structure leaves us humbled by the grandeur of the universe and eager to explore its secrets.

TelescopeSharpstar 94EDPH
Aperture94 mm
Focal length414 mm
MountRainbow Astro RST 135
AutoguidingZWO 178MM, QHY Mini Guide Scope
CameraZWO 2600MM @-10°C
CorrectorF4.4 Quad Reducer
FiltersAntlia SHO 3 nm
Exposure98x300s, Gain 100, bin 1×1,
Date2023-05-13

Leo triplet

Leo triplet is a group of galaxies in the constellation Leo. It contains galaxies NGC 3628 (upper left), Messier 65 (upper right), and Messier 66 (middle down). These galaxies are visible nicely in spring when the constellation Leo rises in the southern part of the sky.

I captured the picture shown here last year, but I haven’t had time to process it so far. It is interesting to compare the progress I made in astrophotography in the last few years. I made the very first picture of this group of galaxies in 2015 and for the first time, I used Pixinsight software for post-processing. The improvement over the freeware Deep Space Stacker was enormous. Similar boost I got recently when I installed BlurXterminator (Pixinsight plugin), which significantly improved the sharpness, but without any unrealistic artifacts.

TelescopeNewton 254/1000 mm
Aperture254 mm
Focal length950 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 2600MM @-10°C
CorrectorMaxField coma corrector
FiltersAntlia V-Pro LRGB
ExposureL26x RGB15x 180s, Gain 100, bin 1×1,
Date2022-03-05

M63 Sunflower galaxy

Messier 63 is a stunning spiral galaxy located about 37 million light-years away from Earth in the constellation Canes Venatici. The galaxy gets its name from the striking pattern of dust and gas that resembles the petals of a sunflower surrounding its bright yellow core.

The Sunflower Galaxy was first discovered by the French astronomer Pierre Méchain in 1779 and later added to the Messier catalog by Charles Messier in 1781. With an apparent magnitude of 8.6, it is easily visible with a small telescope or binoculars.

Spring is a great time to observe galaxies like Messier 63 because, during this season, the Earth is oriented in such a way that we are looking out towards the outer regions of our Milky Way galaxy. This means that the sky is darker and clearer, providing ideal conditions for observing distant galaxies.

TelescopeNewton 254/1000 mm
Aperture254 mm
Focal length1150 mm
MountGemini G53f
AutoguidingZWO 174MM, TS 60/240 mm
CameraZWO 2600MM @-10°C
CorrectorTele Vue Paracorr Type-2
FiltersAntlia Ha, 3 nm, V-Pro RGB
Exposure4x24x180s, Gain 100, bin 1×1,
Date2023-03-21

Sun 2023-03-18

The sun is not shining on my terrace the whole winter. There is a small hill in the south direction, which blocks the sunshine. The situation gets better during the spring. The first rays show up in April when the sun gets higher in the sky. This weekend I managed to capture a few of them.

Quick description of the processing: Image acquisition in FireCapture. In total 4000 frames were recorded. Selection of 12% best pictures and stacking was done in AutoStalkert. The histogram of the picture was modified into an A-curve in ImPPG. The color was added in Pixinsight and the final adjustment in Adobe Lightroom.

TelescopeLunt 60mm
Aperture60 mm
Focal length420 mm
MountRainbow Astro RST 135
CameraZWO ASI 178MM
FiltersDouble stack
Exposure4000x25ms, Gain 0, bin 1×1, 12% selected
Date2023-03-18

SH 2-240 Spaghetti nebula IC 405 Flaming star nebula

The Spaghetti nebula (upper left corner) is a supernova remnant. This means, roughly 40’000 years ago, there was a massive star in the middle of the spherical conglomerate of filaments. The star ended its life in a spectacular explosion and turned into a new form – a pulsar. I knew from the beginning, that I would be chasing the ghost. Cosmic Spaghetti are a very dim nebula and to capture them one needs a wide-angle telescope, fast optics, narrow band filter, and a lot of patience. I didn’t use a telescope, but a lens Samyang 135 mm f 2.0 slowed down to f 2.8, combined with a brand new dual-narrow band Antlia filter, optimized for high-speed optics, and in total, I collected the photons for nearly 10 hours.

The much brighter nebula in the bottom right corner is called Flaming Star Nebula, cataloged under IC 405. Compared to the Spaghetti Nebula, which represents the death of the star, the Flaming Star Nebula represents the vital part of the life of the star AE Aurigae. This star radiates so strongly, that it excites surrounding hydrogen gas. Therefore it is called an emission nebula.

Visually not far away, the comet C/2022 E3 ZTF was passing around Mars, but I was not distracted by that, because I was concentrating to capture as many pictures of the Spaghetti as possible. Besides, I already captured this comet recently.

TelescopeSamyang 135 mm f2.0 @ f2.8
Aperture48 mm
Focal length135 mm
MountiOptron Skyguider Pro
AutoguidingZWO 178MM, QHY Mini Guide Scope 30/130 mm
CameraZWO ASI 6200 MC @-10 °C
FiltersAntlia Dualband High speed
Exposure113x300s, gain 100
Date2023-02-12

Comet C/2022 E3 (ZTF)

This comet is all over the internet right now. Even mainstream media are reporting about the “Neandertal” comet with the poetic name C/2022 E3 (ZTF), which visited us last time 50’000 years ago. I was somehow losing hope to see or take a picture of this comet because the weather was constantly cloudy since October. However, on Sunday 30.1.2023 the sky cleared and I had a time window till 2 o’clock when the clouds rolled in. Unfortunately, the whole event was partially ruined by the Moon in the first quarter, so the best conditions occurred after midnight when the Moon was setting. Anyway, if you want to know why it has such a name, which resembles the password of the wifi at a hotel lobby? In fact, the comet’s naming follows the conventions. The letter C stands for a non-periodic comet, 2022 is the year of discovery, E refers to the month of discovery (first half of March), number 3 means a third comet discovered in this part of the month and ZTF stands for who or what discovered the comet. This specific comet was discovered by Zwicky Transient Facility. And why the nucleus of the comet glows green? Because most of the comets contain dicarbone (C2) molecules, which break apart by solar radiation, and during this process, the energy in form of light is released at carbon specific wavelength of 518 nm, which is a green visible light.

TelescopeSharpstar 94EDPH
Aperture94 mm
Focal length414 mm
MountRainbow Astro RST 135
AutoguidingZWO 178MM, QHY Mini Guide Scope
CameraZWO 6200MC @-10°C
CorrectorF4.4 Quad Reducer
Filtersno
Exposure51x120s, Gain 100, bin 1×1,
Date2023-01-30

And here is an animation, which goes back and forth. For half of the animation (forward movement) I used 38 frames, each 2 minutes long, which means 76 minutes in total. This gives you an idea of how quickly the comet moves with respect to the background.


Solar eclipse

October 2022 offered several spectacular astronomical events in the Solar system. Recently I captured the transit of the moon Io across Jupiter and on the 25th a partial solar eclipse occurred. I was ready, the forecast was optimistic, but the clouds were still blocking the sun. Fortunately, a small gap between the clouds occurred and the sun for visible for a short moment. I didn’t hesitate a bit and focused my solar telescope, adjusted the tilter, and the pressure tuner. As soon as the picture acquisition started, the clouds rolled in again. In total, I managed to store only 876 pictures, so I selected 35% best ones and stacked them together.

Later on, the clouds cleared completely, so I got the opportunity to capture the sun properly.

TelescopeLunt 60mm
Aperture60 mm
Focal length420 mm
MountRainbow Astro RST 135
CameraZWO ASI 178MM
FiltersDouble stack
Exposure4000x17ms, Gain 36, bin 1x1, 33% selected
Date2022-10-25

Jupiter

This year was a special occasion to observe or photograph Jupiter. The biggest planet in our Solar system got very close to Earth. In fact, it was the closest in several decades. Such events force me to take an action. I had to wait for a cloudless night and took my biggest telescope out. Well, I must admit that the opportunity of Jupiter’s opposition is great but more important than the distance between the Earth and the observed planet is the quality of seeing. The light started the journey on Sun, then traveled 778 million km to Jupiter, got reflected and traveled 367 million km back to Earth, and got spoiled in the last 100 km when passing through the thick Erth’s atmosphere.

On 19.10.2022 I was extremely lucky because Jupiter’s moon Io was transiting and creating the eclipse. Moreover, the giant red spot was visible simultaneously. I captured a few shots and got the idea to capture more of them and compose a video. In total, I was photographing the event for nearly one hour and made 15 frames out of it. You can see how quickly Jupiter spins. One day on Jupiter takes only 9 hours and 55 minutes.

And here is a static picture:

Telescope:Celestron EdgeHD C14
Aperture:354 mm
Focal length:3910 mm
MountGemini G53f
Autoguidingno
Camera:ZWO ASI485MC
Corrector:no
Filters:no
Exposure:4000xRGB (25% used) 18 ms gain 93
Date:2022-10-19